Bi-level multi-source learning for heterogeneous block-wise missing data

نویسندگان

  • Shuo Xiang
  • Lei Yuan
  • Wei Fan
  • Yalin Wang
  • Paul M. Thompson
  • Jieping Ye
چکیده

Bio-imaging technologies allow scientists to collect large amounts of high-dimensional data from multiple heterogeneous sources for many biomedical applications. In the study of Alzheimer's Disease (AD), neuroimaging data, gene/protein expression data, etc., are often analyzed together to improve predictive power. Joint learning from multiple complementary data sources is advantageous, but feature-pruning and data source selection are critical to learn interpretable models from high-dimensional data. Often, the data collected has block-wise missing entries. In the Alzheimer's Disease Neuroimaging Initiative (ADNI), most subjects have MRI and genetic information, but only half have cerebrospinal fluid (CSF) measures, a different half has FDG-PET; only some have proteomic data. Here we propose how to effectively integrate information from multiple heterogeneous data sources when data is block-wise missing. We present a unified "bi-level" learning model for complete multi-source data, and extend it to incomplete data. Our major contributions are: (1) our proposed models unify feature-level and source-level analysis, including several existing feature learning approaches as special cases; (2) the model for incomplete data avoids imputing missing data and offers superior performance; it generalizes to other applications with block-wise missing data sources; (3) we present efficient optimization algorithms for modeling complete and incomplete data. We comprehensively evaluate the proposed models including all ADNI subjects with at least one of four data types at baseline: MRI, FDG-PET, CSF and proteomics. Our proposed models compare favorably with existing approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning from Multiple Social Networks

With the proliferation of social network services, more and more social users, such as individuals and organizations, are simultaneously involved in multiple social networks for various purposes. In fact, multiple social networks characterize the same social users from different perspectives, and their contexts are usually consistent or complementary rather than independent. Hence, as compared ...

متن کامل

Heterogeneous Component Analysis

In bioinformatics it is often desirable to combine data from various measurement sources and thus structured feature vectors are to be analyzed that possess different intrinsic blocking characteristics (e.g., different patterns of missing values, observation noise levels, effective intrinsic dimensionalities). We propose a new machine learning tool, heterogeneous component analysis (HCA), for f...

متن کامل

Multi-Source Video Summarisation

Many visual surveillance tasks, e.g.video summarisation, is conventionally accomplished through analysing imagerybased features. Relying solely on visual cues for public surveillance video understanding is unreliable, since visual observations obtained from public space CCTV video data are often not sufficiently trustworthy and events of interest can be subtle. On the other hand, non-visual dat...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

WTEN: An Advanced Coupled Tensor Factorization Strategy for Learning from Imbalanced Data

Learning from imbalanced and sparse data in multi-mode and high-dimensional tensor formats efficiently is a significant problem in data mining research. On one hand, Coupled Tensor Factorization (CTF) has become one of the most popular methods for joint analysis of heterogeneous sparse data generated from different sources. On the other hand, techniques such as sampling, cost-sensitive learning...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 102 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2014